Analiza i algebra - strona 2

note /search

Pochodne wyższych rzędów - omówienie

  • Uniwersytet Przyrodniczy we Wrocławiu
  • Analiza i algebra
Pobrań: 14
Wyświetleń: 581

POCHODNE WYŻSZYCH RZĘDÓW. Pochodną pochodnej nazywamy pochodną drugiego rzędu i oznaczamy f”: , itd. Używamy oznaczeń f', f”, f”', f(4),…,f(n). Mówimy, że f jest klasy Cn, jeśli ma ciągłą pochodną n-tego rzędu. Mówimy, że f(a,b)→R jest wypukła (wklęsła) jeśli . Twierdzenie: Załóżmy, że f ma pochodn...

Rownania różniczkowe

  • Uniwersytet Przyrodniczy we Wrocławiu
  • Analiza i algebra
Pobrań: 28
Wyświetleń: 560

Cel ćwiczenia Celem ćwiczenia jest praktyczne sprawdzenie wiedzy na temat popularnych metod rozwiązywania zagadnień początkowych równań i układów równań różniczkowych zwyczajnych. Porównanie przydatności poszczególnych metod...

Równania różniczkowe liniowe rzędu drugiego - omówienie

  • Uniwersytet Przyrodniczy we Wrocławiu
  • Analiza i algebra
Pobrań: 14
Wyświetleń: 637

Równania różniczkowe liniowe rzędu drugiego o stałych współczynnikach p1 (x) = p1 p0 (x) = p0 (*) y” + p1 y ` + p0 y = f (x) (**) y” + p1 y ` + p0 y = 0 y = erx y'= rerx y” = r2erx r2 erx + p1r erx + p0 erx = 0 r2 + p1r + p0 = 0 - równanie charakterystyczne Δ0 wówczas mamy 2 różne pierwiastki r...

Równania różniczkowe liniowe rzędu pierwszego

  • Uniwersytet Przyrodniczy we Wrocławiu
  • Analiza i algebra
Pobrań: 28
Wyświetleń: 1183

Równania różniczkowe liniowe rzędu pierwszego Def. Równanie gdzie p i g są funkcjami ciągłymi w (a, b) nazywamy równaniem różniczkowym liniowym rzędu pierwszego. Def. Równanie [ w (1) g(x) = 0] nazywamy równaniem różniczkowym jednorodnym. Tw. CORN = CORJ + CSRN gdzie CORN - całka ogólna równania...

Równania różniczkowe rzędu II i wyższe - omówienie

  • Uniwersytet Przyrodniczy we Wrocławiu
  • Analiza i algebra
Pobrań: 7
Wyświetleń: 476

Równania różniczkowe rzędu II i wyższe F (x, y, y', y”) = 0 F (x, y, y', y”, ..., y(n)) = 0 y” = f (x, y, y') y(n) = f (x, y, y', y”, ..., y(n-1)) Def. Mówimy, że funkcja Lipschiza ze stałą L (ze względu na zmienne (y1, y2, ...,yn)) w obszarze D, jeżeli dla każdych 2 punktów (x, y1, y2, ...,yn), ...

Równania różniczkowe - omówienie

  • Uniwersytet Przyrodniczy we Wrocławiu
  • Analiza i algebra
Pobrań: 0
Wyświetleń: 623

Równania różniczkowe Def. Równaniem różniczkowym zwyczajnym nazywamy równanie z niewiadomą funkcją y = y (x) zmiennej x. Liczbę n nazywamy rzędem równania, jeżeli w równaniu występuje pochodna n- tego rzędu a nie występują pochodne wyższych rzędów niż n Def. Całką szczególną (rozwiązaniem szczególn...

Symulacja i liczby losowe - omówienie

  • Uniwersytet Przyrodniczy we Wrocławiu
  • Analiza i algebra
Pobrań: 28
Wyświetleń: 847

Symulacja : symulacja jest możliwością naśladowania warunków rzeczywistych na zasadzie eksperymentu z dowolnie ustaloną liczbą cechujących go parametrów, przy zachowaniu pewnych elementów losowości. Przeprowadza się go w celu obejścia się od innych, czasochłonnych metod. Przykład: symulacja kompute...

Szeregi Fouriera - omówienie

  • Uniwersytet Przyrodniczy we Wrocławiu
  • Analiza i algebra
Pobrań: 56
Wyświetleń: 896

Szeregi Fouriera Def. Szeregiem trygonometrycznym nazywamy szereg postaci Def. Szeregiem Fouriera dla funkcji f całkowalnej w nazywamy szereg trygonometryczny, w którym n=1, 2, co zapisujemy Szereg Fouriera zbudowany dla funkcji może być zbieżny lub rozbieżny. Jeżeli szereg ten jest zbieżny, przeci...

Szeregi potęgowe i szeregi Taylora i Maclaurina - omówienie

  • Uniwersytet Przyrodniczy we Wrocławiu
  • Analiza i algebra
Pobrań: 14
Wyświetleń: 546

Szeregi potęgowe Wśród szeregów potęgowych ważną rolę pełnią szeregi: - szereg potęgowy o środku w x0 (1) Zauważmy, że jeżeli szereg (1) jest zbieżny w pewnym punkcie ρ to jest zbieżny dla wszystkich x takich, że , Def. Promieniem zbieżności szeregu potęgowego (1) nazywamy kres górny wartości bez...