Metody numeryczne

Rozwiązywanie równań nieliniowych - omówienie

  • Politechnika Warszawska
  • dr Jacek Włsowski
  • Metody numeryczne
Pobrań: 42
Wyświetleń: 763

W1/2 str 1 Rozwi zywanie równa nieliniowych Niech f b dzie funkcj okre lon na przedziale [a,b]. Zadaniem jest znalezienie takiego α z tego przedziału, e f (α) = 0. Oczywi cie takich warto ci α mo e by wiele. Numerycznie, takie zadanie, rozwi zuje si zwykle metodami iteracyjnymi, tj. tworzymy ...

Rozwiązywanie układów równań nieliniowych - omówienie

  • Politechnika Warszawska
  • dr Jacek Włsowski
  • Metody numeryczne
Pobrań: 35
Wyświetleń: 672

str 4 W1/2 a) bisekcji : E = 1 ; p = 1, K = 1, b) siecznych : E = 1+ 5 2 ≅ 1.62 ; p = 1+ 5 , Κ = 1, 2 1 c) stycznych : E = 2 1+ K1 ; p = 2, K = 1 + K 1 Z omówionych trzech metod najni szy wska nik efektywno ci ma metoda bisekcji (zbie no tylko liniowa). Porównanie dwóch pozostałyc...

Aproksymacja - wykład

  • Politechnika Wrocławska
  • dr hab. inż. Ewa Janina Skubalska-Rafajłowicz
  • Metody numeryczne
Pobrań: 70
Wyświetleń: 1337

Aproksymacja Zadaniem aproksymacji funkcji jest znalezienie funkcji która jest przybliżeniem funkcji dokładnej w ściśle sprecyzowanym sensie. W przypadku poniższego zadania staramy się znaleźć funkcję analityczną (wielomianową), która będzie ...

Całkowanie numeryczne - wykład - metody

  • Politechnika Wrocławska
  • dr hab. inż. Ewa Janina Skubalska-Rafajłowicz
  • Metody numeryczne
Pobrań: 77
Wyświetleń: 1337

Całkowanie numeryczne Całkowanie numeryczne to przybliżone obliczanie całek oznaczonych. Proste metody całkowania numerycznego polegają na przybliżeniu całki za pomocą odpowiedniej sumy ważonej całkowanej funkcji w kilku punktach. Całkowanie numeryczne zalicza się do

Programowanie liniowe - metoda simplex - wykład

  • Politechnika Wrocławska
  • dr hab. inż. Ewa Janina Skubalska-Rafajłowicz
  • Metody numeryczne
Pobrań: 35
Wyświetleń: 784

Programowanie liniowe - metoda simplex Algorytm simplex jest algorytmem pozwalającym znaleźć maksimum linowej funkcji celu określonej równaniem w obszarze ograniczonym liniowymi warunkami: podstawowymi: dodatkowymi Algorytm ten pol...

Całkowanie numeryczne - metoda Simsona

  • Politechnika Wrocławska
  • dr inż. Maciej Andrzej Lichtenstein
  • Metody numeryczne
Pobrań: 63
Wyświetleń: 1974

Sprawozdanie z ćwiczenia Temat: Całkowanie numeryczne Opis badanego zagadnienia Zadanie polegało na napisaniu programu wyznaczającego całki oznaczone funkcji: 1. f(x)= 4x3+3x2 2. f(x)= 3sin(x2) przy użyciu 3 metod: Prostokątów Trapez...

Implementacja i analiza eksperymentalna algorytmów metaheurystycznych ...

  • Politechnika Wrocławska
  • dr inż. Maciej Andrzej Lichtenstein
  • Metody numeryczne
Pobrań: 14
Wyświetleń: 756

POLITECHNIKA WROCŁAWSKA Temat: Implementacja i analiza eksperymentalna algorytmów metaheurystycznych. Wydział Elektroniki Automatyka i Robotyka studia inż. Data: Ocena: Prowadzący: PROBLEM: Dany jest zbiór n zadań J={J1, J2, ..., Jn} oraz zbiór...

Wykład - interpolacja

  • Politechnika Wrocławska
  • dr inż. Maciej Andrzej Lichtenstein
  • Metody numeryczne
Pobrań: 28
Wyświetleń: 616

Interpolacja Interpolacja jest metoda numeryczna polegająca na wyznaczaniu w danym przedziale tzw. funkcji interpolacyjnej, która przyjmuje w nim z góry zadane wartości w ustalonyc...

Reprezentacje liczb, algorytm Hornera - wykład

  • Politechnika Wrocławska
  • dr inż. Maciej Andrzej Lichtenstein
  • Metody numeryczne
Pobrań: 14
Wyświetleń: 560

Reprezentacje liczb, algorytm Hornera, badanie błędów numerycznych Część I 1. Wstęp Funkcję można przedstawić w postaci nieskończonego szeregu: Charakterystyczna cecha tej funkcji jest to, ze pochodna tej funkcji jest jej równa. Wykresem funkcji jest: 2. Fragment kodu: hold on; x=1 dokladnosc=0.0...

Układy równań liniowych - wykład

  • Politechnika Wrocławska
  • dr inż. Maciej Andrzej Lichtenstein
  • Metody numeryczne
Pobrań: 7
Wyświetleń: 497

Układy równań liniowych W przeprowadzonym doświadczeniu przeprowadziliśmy analizę rozwiązywalności układu równań liniowych metodą iteracyjną Jakobiego. Metody te opierają się na stworzeniu takiego ciągu wektorów rozwiązań, aby był on zbie...