Wyznaczanie momentu bezwładności żyroskopu

Nasza ocena:

3
Pobrań: 896
Wyświetleń: 3395
Komentarze: 0
Notatek.pl

Pobierz ten dokument za darmo

Podgląd dokumentu
Wyznaczanie momentu bezwładności żyroskopu - strona 1 Wyznaczanie momentu bezwładności żyroskopu - strona 2 Wyznaczanie momentu bezwładności żyroskopu - strona 3

Fragment notatki:

Wyznaczanie momentu bezwładności żyroskopu. Żyroskopem nazywamy bryłę sztywną, osadzoną na osi będącej jednocześnie swobodną osią obrotu i osią największego momentu bezwładności. Jeżeli na żyroskop, wprawiony w szybki ruch obrotowy nie działa moment sił zewnętrznych, wektor L momentu pędu nie ulega zmianie i oś żyroskopu zachowuje stały kierunek w przestrzeni. Wartość liczbowa momentu pędu jest iloczynem momentu bezwładności żyroskopu i wartości liczbowej wektora prędkości kątowej:
L = I *  0 Pod działaniem zewnętrznego momentu siły, skierowanego prostopadle do osi obrotu następuje zmiana wektora momentu pędu.
Schemat żyroskopu:
J - moment pędu
M - moment sił zewnętrznych
dJ - wektor zmiany momentu pędu
 1 - prędkość kątowa precesji
d - kąt zmiany osi obrotu żyroskopu
Zgodnie z II zasadą dynamiki ruchu obrotowego bryły sztywnej wektor dL zmiany momentu pędu jest skierowany zgodnie z momentem sił zewnętrznych, a jego wartość liczbowa wyraża się wzorem:
dL = M * a * t ZESTAW POMIAROWY: WZORY: Prędkość kątowa:
 n = 2  /T n I m = m * g * (r n - r o ) /  0  n m = 1,4 kg  0 = 2970 obr/min = 49,5 obr/s = 310,9 rad/s Lp. r 0 [m] r n [m] T n [s]  n [rad/s] I m [kg/m2] 1 0.275 0.295 41.1 0.15280 0.00578 2 0.275 0.315 17.0 0.36941 0.00478 3 0.275 0.335 11.3 0.55575 0.00477 4 0.275 0.355 9.1 0.69011 0.00512 5 0.275 0.375 7.1 0.88451 0.00499 6 0.275 0.395 6.0 1.04667 0.00506 7 0.275 0.415 4.9 1.28163 0.00483 8 0.275 0.435 4.7 1.33617 0.00529 9 ... zobacz całą notatkę



Komentarze użytkowników (0)

Zaloguj się, aby dodać komentarz