To tylko jedna z 3 stron tej notatki. Zaloguj się aby zobaczyć ten dokument.
Zobacz
całą notatkę
Wykład 1 Zdarzenia losowe i prawdopodobieństwo. Zmienna losowa i jej rozkłady Statystyka • Zbiór metod służących pozyskiwaniu, prezentacji oraz analizie danych. • Podstawowe zadanie statystyki: analiza i interpretacja danych. statystyka opisowa statystyka matematyczna Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena charakterystyk populacji generalnej na podstawie danych częściowych = metody rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi. Pojęciami pierwotnymi są: •zdarzenie elementarne ω -(inny symbol - e) - najprostszy wynik doświadczenia losowego, tzn. zdarzenie losowe, którego nie da się rozłożyć na zdarzenia prostsze. •zbiór zdarzeń elementarnych Ω - (inny symbol - E) - zbiór wszystkich zdarzeń elementarnych w danym doświadczeniu lub obserwacji Definicja prawdopodobieństwa (klasyczna) Laplace'a (1812) • Prawdopodobieństwem zajścia zdarzenia A nazywamy iloraz liczby zdarzeń sprzyjających zdarzeniu A do liczby wszystkich możliwych przypadków, zakładając, że wszystkie przypadki wzajemnie się wykluczają i są jednakowo możliwe. Prawdopodobieństwo wyrzucenia 6 oczek? P(6)=1/6 Jedna kostka do gry Ω |Ω| =6 A = {2, 4, 6} B = {1, 2} Zdarzenia losowe Klasyczna definicja prawdopodobieństwa A = {2, 4, 6} Prawdopodobieństwo geometryczne G.L.L.Buffon Definicja klasyczna nie pozwala obliczać prawdopodobieństwa w przypadku, gdy zbiory A i Ω są nieskończone (ciągłe), jeśli jednak zbiory te mają interpretację geometryczną, zamiast liczebności zbiorów można użyć miary geometrycznej (długość, pole powierzchni, objętość). t T Definicja prawdopodobieństwa częstościowa (statystyczna) R.von Mises'a (1931) Zaproponował, żeby zdefiniować prawdopodobieństwo jako granicę ciągu częstości: gdzie kn(A) to liczba rezultatów sprzyjających zdarzeniu A po n próbach. W długiej serii doświadczeń obserwuje się pojawienie się zdarzenia A. Jeśli częstość zdarzenia A wyznaczoną jako iloraz kn(A) i n przy wzrastaniu długości serii zbliża się do pewnej liczby p oscylując wokół tej liczby i jeśli wahania częstości zdarzenia A przejawiają tendencję malejącą przy wzrastającym n, to liczba p nazywa się prawdopodobieństwem zdarzenia A. Definicja prawdopodobieństwa częstościowa (statystyczna) R.von Mises'a (1931) np. rzut monetą Jeżeli Ω jest daną przestrzenią zdarzeń elementarnych i każdemu zdarzeniu jest przyporządkowana dokładnie jedna liczba P(A) taka, że:
(…)
…
Wykład 1 Zdarzenia losowe i prawdopodobieństwo. Zmienna losowa i jej rozkłady Statystyka • Zbiór metod służących pozyskiwaniu, prezentacji oraz analizie danych. • Podstawowe zadanie statystyki: analiza i interpretacja danych. statystyka opisowa statystyka matematyczna Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena…
... zobacz całą notatkę
Komentarze użytkowników (0)