Teoria informacji i kodowania - strona 3

Pojedyńczy kod kontroli parzystości

  • Politechnika Śląska
  • dr Jerzy Rutkowski
  • Teoria informacji i kodowania
Pobrań: 14
Wyświetleń: 602

Single parity check code A single-parity-check code uses a single-parity bit to generate codeword with an even or odd parity, i.e. an even or odd number of nonzero bits respectively. Then, and for an even-parity code, parity-check sum: Parity-check matrix and generator matrix are trivial: Decode...

Przekazywanie informacji zakodowanej przez DMC

  • Politechnika Śląska
  • dr Jerzy Rutkowski
  • Teoria informacji i kodowania
Pobrań: 0
Wyświetleń: 434

T ransmission of encoded information through DMC Source messages are encoded in M codewords : where the codeword letter is a letter of input alphabet : , In DMC, noise sequences (error patterns) : are added to codewords, producing output sequences : where the output sequence letter is a letter o...

Kody binarne o zmiennej długości

  • Politechnika Śląska
  • dr Jerzy Rutkowski
  • Teoria informacji i kodowania
Pobrań: 0
Wyświetleń: 476

Variable length binary codes Codeword length . Average number of code letters (bits) per source symbol ( average length of a codeword): , for binary code: . If then, By proper selection of codeword lengths, the minimum distance of one bit from absolute minimum (4.2.2) can be achieved. Distance ...

Decimal konwersji binarnej

  • Politechnika Śląska
  • dr Jerzy Rutkowski
  • Teoria informacji i kodowania
Pobrań: 7
Wyświetleń: 518

Decimal to binary conversion Step 1. Set j = n . Divide a decimal number by 2, set the reminder into the right most bit . Step 2. Set . Divide the last obtained result by 2, set the reminder into the j -th bit Step 3. If the last obtained result is 1, then set and GO TO Step 4, otherwise GO TO St...

Hamming code

  • Politechnika Śląska
  • dr Jerzy Rutkowski
  • Teoria informacji i kodowania
Pobrań: 0
Wyświetleń: 777

Hamming code Hamming codes are the primary class of single-error-correcting codes. Number of nonzero syndromes of an block code is: . Number of single-error patterns is n . Then, to correct every single error inequality (6.4.1) has to be fulfilled: In general, number of all errors up to errors is:...

Pomiar traktowany jako próba transmisji danych przez DMC

  • Politechnika Śląska
  • dr Jerzy Rutkowski
  • Teoria informacji i kodowania
Pobrań: 0
Wyświetleń: 259

Measurement test treated as data transmission through DMC If are data generated by a source (channel input), the measured data - System Under Test (SUT) states, and are the received data (channel output), measurements - SUT states clustered in ambiguity sets then, the acquired mutual informatio...

Kod produktu

  • Politechnika Śląska
  • dr Jerzy Rutkowski
  • Teoria informacji i kodowania
Pobrań: 0
Wyświetleń: 721

Product code A single-parity-check code has no error-correction capability, it can only detect occurrence of odd number of errors. Error correction can be achieved by combining two single-parity-check codes and , in a form of rectangular array. The code parameters are: ; , Then, such product code ...

Źródło z pamięcią

  • Politechnika Śląska
  • dr Jerzy Rutkowski
  • Teoria informacji i kodowania
Pobrań: 0
Wyświetleń: 406

Source with memory Consider a sequence of messages of a discrete memoryless source X , of the length L : where is any element of X . Total of all sequences: A discrete memoryless source X described by sequences (2.2.1) is called the L -the extens...

Kanał symetryczna

  • Politechnika Śląska
  • dr Jerzy Rutkowski
  • Teoria informacji i kodowania
Pobrań: 0
Wyświetleń: 469

S ymmetric Channel (SC) A DMC is defined to be symmetric if set of outputs can be partitioned into subsets in such a way that for each subset , each row of the corresponding submatrix is a permutation of each other row and each column is a permutation of each other column. Example SC transition p...

Klasyfikacja transmisji

  • Politechnika Śląska
  • dr Jerzy Rutkowski
  • Teoria informacji i kodowania
Pobrań: 0
Wyświetleń: 588

Classification of transmissions Total: . Error less: M . Erroneous: . Non detectable errors: when any of M codewords becomes any other codeword. Detectable errors: , when any of M code words becomes any of redundant sequences. Correctable errors: , as each of redundant sequences (words) can ...