Statystyka - zadanie na wszystkie miary

Nasza ocena:

3
Pobrań: 231
Wyświetleń: 1106
Komentarze: 0
Notatek.pl

Pobierz ten dokument za darmo

Podgląd dokumentu
Statystyka - zadanie na wszystkie miary - strona 1 Statystyka - zadanie na wszystkie miary - strona 2 Statystyka - zadanie na wszystkie miary - strona 3

Fragment notatki:


ZADANIA Wzrost studentów grupy A
określ rodzaj szeregu statystycznego szereg punktowy; rozkład jednorodny
Wyznaczamy NAJWYŻSZĄ WARTOŚĆ (30) i obliczamy LICZ. SKUMULOWANĄ Aby OBLICZYĆ LICZEBNOŚĆ SKUMULOWANĄ należy:
dodajemy: nad 10 jest 0 to 0 + 10 = 10
nad 10 jest 15 to 10 + 15 = 25
25 + 20 = 45
45 + 30 = 75
75 + 20 = 95
95 + 5 = 100
TO DAJE LICZEBNOŚĆ SKUMULOWANĄ
WZROST X i Odsetek studentów n i Liczebność skumulowana sk x i * n i x i 2 * n i 165
10
10
1650
272250
170 15
25 = Q 1.4 = x 25 2550
435500
175
20
45
3500
612500
180 30 naijwyższa wartość 75= Q 3.4 = x 75 5400
97200
185
20
95
3700
684500
190
5
100
950
180500
X
100% X
∑ 17750
∑ 3157250
obliczyć pozycyjne miary tendencji centralnej (tzn. Dominanta, Mediana, Kwartyle )
D = x i = 180 [ cm ] bo 30 = 180 cm Najwięcej studenci maja 180 cm wzrostu M ≈ x n/2 ≈ x 100 /2 ≈ x 50 ≈ 180 [cm] 100 bo n = ∑ ni =100% najbliżej 50 jest 30 50% badanych studentów ma wzrost 180 cm lub mniej a pozostałe 50% badanych studentów ma wzrost 180 cm lub więcej. Q 1.4 ≈ x n/4 ≈ x 100/4 ≈ x 25 ≈ 170 [cm] bo x 25 = 170 cm 25% badanych studentów ma wzrost 170 cm lub mniej a pozostałe 75% badanych studentów ma wzrost 170 cm lub więcej. Q 3.4 ≈ X 3 * n ≈ x 3 * 100 ≈ x 300 ≈ x 75 ≈ 180 [cm] bo x 75 = 180 cm 4 4 4 75% badanych studentów ma wzrost 180 cm lub mniej a pozostałe 25% badanych studentów ma wzrost 180 cm lub więcej Obliczyć klasyczną, absolutną miarę zróżnicowania (średnią arytmetyczną) S (x) = √ x 2 - (x) 2 gdzie ∑ x i 2 * n i aby to obliczyć należy obliczyć x i -* n i a wyniki zsumować
x 2 = n poczym obliczyć x i 2 * n i i wyniki też zsumować a następnie podstawiamy:
∑ x i * n

(…)

… zamieszkującej miasta województwa zachodniopomorskiego. Otrzymano następujące dane w tys. xi
ni
nsk
Do 1
100
0 + 100 = 100
2 - 3
80
100 + 80 = 180
4 - 5
50
180 + 50 = 230
6 - 7
30
230 + 30 = 260
8 - 9
20
260 + 20 = 280
∑ 280
określić zbiorowość, jednostkę i cechę statystyczną
Zbiorowością statystyczną są miasta województwa zachodniopomorskiego zbadane w dniu 31. XII. 1999r.;
Jednostką statystyczną jest każde…
… - średnia arytmetyczna- ma interpretację
D - domianta;
M - mediana; mają interpretację
Q1.3;; Q3.4 - kwartyle
MIARA DYSPERSJI KLASYCZNA
MIARA DYSPERSJI POZYCYJNA
ABSOLUTNA S(x) - odchylenie standardowe - ma interpretacę
Q—odchylenie ćwiartkowe - mają interpretację; pojawia się słowo w zawężonym
STOSUNKOWA VS- odchylenie standardowe- ma interpretację
VQ - odchylenie ćwiartkowe - ma interpretację; pojawia…
… pracowników względem siebie
Miary zróżnicowania to: S(x),- średnia arytmetyczna- odchylenie ćwiartkowe, VS,- odchylenie standardowe, VQ - pozycyjny współczynnik zmienności - miara stosunkowa niemianowana.
S(x) = √S2(x) = √ 0,0324 = 0,18 [tys]
Interpretacja Wynagrodzenie pracowników różni się od średniej arytmetycznej przeciętnie o +, - 0,18 [tys] zł.
S(x) 0,18
VS = x * 100% = 0,96 * 100% = 18,75…
... zobacz całą notatkę



Komentarze użytkowników (0)

Zaloguj się, aby dodać komentarz