Rama trójprzegubowa przykład złożony

Nasza ocena:

3
Pobrań: 21
Wyświetleń: 1372
Komentarze: 0
Notatek.pl

Pobierz ten dokument za darmo

Podgląd dokumentu
Rama trójprzegubowa przykład złożony - strona 1 Rama trójprzegubowa przykład złożony - strona 2 Rama trójprzegubowa przykład złożony - strona 3

Fragment notatki:


3U]\NáDG5DPDÄWUyMSU]HJXERZD´±SU]\SDGHN]áR*RQ\ :\]QDF]\üUHDNFMH q A B C D E l l l l l 5R]ZL]DQLH 3U]HGVWDZLRQD UDPD GZXQDZRZD MHVW XNáDGHP ]áR*RQ\P ]  WDUF] $' '% '( L (& SRáF]RQ\FK SU]HJXERZR =QDQ\ MX* XNáDG ÄWUyMSU]HJXERZ\´ MHVW WXWDM ]ZLHORNURWQLRQ\ 3R UR]G]LHOHQLXZSU]HJXELH'SRZVWDMGZDXNáDG\ÄWUyMSU]HJXERZH´LSRXZROQLHQLX]ZL
]yZ RWU]\PXMHP\QDVW
SXMFHXNáDG\VLá A B D C E VD VD HD HD HA VA VB HB VC HC I :MDNLVSRVyEZ\]QDF]DVL
QLHZLDGRPHUHDNFMHZXNáDG]LHÄWUyMSU]HJXERZ\P´ZLHP\MX* ] SU]\NáDGX  =DMPLHP\ VL
 ]DWHP WDNLP XNáDGHP ± F]
FL , 'R Z\]QDF]HQLD UHDNFML podpory C wykorzystamy równania równowagi: 0 M i I iD = ∑  i  0 M i Iprawa iE = ∑ . 0DMRQHSRVWDü       VC 2 l  + HC  l  –2 ql   l  = 0       VC  l +  HC 2 l  – ql   l/2  = 0. =XNáDGXWHJRREOLF]\P\*H HC= - 1/3 ql  i  VC=7/6ql.  =QDNÄ´R]QDF]D*H]ZURWUHDNFML+C MHVWSU]HFLZQ\GR]DáR*RQHJR : WHQ VSRVyE Z XNáDG]LH Z\MFLRZ\P X]\VNDOLP\ XNáDG VLá SU]HGVWDZLRQ\ QD SRQL*V]\P rysunku . 2 VA HB D E HA VB 1/3ql 7/6 ql : FHOX REOLF]HQLD SR]RVWDá\FK UHDNFML SRZWyU]\P\ WRN SRVW
SRZDQLD GOD XNáDGX „trójprzegubowego”. Do obliczenia reakcji pionowych wykorzystamy  równania M iA i ∑ = 0  i  M iB i ∑ = 0 . 3U]\MPXMRQHSRVWDü VB 2 l  +7/6ql 3 l  –3 ql  3/2 l  = 0    i   -VA 2 l  +3 ql  1/2 l  +7/6ql  l  –= 0, VNGREOLF]DP\ZDUWRFL VB= 1/2 ql  i  VA=4/3ql. 'R REOLF]HQLD UHDNFML SR]LRP\FK PDM ZVSyOQ OLQL
 G]LDáDQLD SRWU]HEQ\ MHVW MHV]F]H MHGHQ SRG]LDá :\NRU]\VWDP\ SRZWyUQLH SU]HJXE ' 3RáF]HQLH Z SXQNFLH ' MHVW SU]HJXEHP ZLHORNURWQ\P JG\* áF]\ ZL
FHM QL* GZD HOHPHQW\ 3RG]LDá Z W\P SRáF]HQLX PR*H E\ü SU]HSURZDG]RQ\QDNLONDVSRVREyZSU]HGVWDZLRQ\FKQDU\VXQNX2GG]LDá\ZDQLDZND*G\P ]W\FKSU]\SDGNyZVLQQH A B D C E VD VD HD HD I 1/3ql 7/6ql        V1 A B D C E H1 H1 HA V1 II 4/3ql V2 C E III A H2 D V2 H2 HB 1/2ql 3LHUZV]\]SU]HGVWDZLRQ\FKSRG]LDáyZZ\NRU]\VWDOLP\GRREOLF]HQLDUHDNFML9C i  HC. 'UXJL ] W\FK SRG]LDáyZ Z\NRU]\VWDP\ GR Z\]QDF]HQLD UHDNFML +A. Równanie  0 M i II iD = ∑ SU]\MPLHSRVWDüTO l  + HA  l  + ql  l/2  LVWG HA = 5/6 ql. 3 7U]HFLSRG]LDáSR]ZROLZ\]QDF]\üUHDNFM
+B. Z równania  0 M i III iD = ∑ Z\QLND*Hò ql  l - HB  l  = 0  i  HB = ½ ql. =HVWDZLHQLHREOLF]RQ\FKUHDNFMLSU]HGVWDZLDU\VXQHN'ODXáDWZLHQLDVSUDZG]HQLDZLHONRFL UHDNFMLVSURZDG]RQHVGRZVSyOQHJRPLDQRZQLND 8/6 ql 3/6 ql q 5/6 ql 3/6 ql 2/6 ql 7/6 ql x y ... zobacz całą notatkę

Komentarze użytkowników (0)

Zaloguj się, aby dodać komentarz