Dynamika bryły sztywnej - Prędkość kątowa

Nasza ocena:

3
Pobrań: 42
Wyświetleń: 798
Komentarze: 0
Notatek.pl

Pobierz ten dokument za darmo

Podgląd dokumentu
Dynamika bryły sztywnej - Prędkość kątowa - strona 1 Dynamika bryły sztywnej - Prędkość kątowa - strona 2 Dynamika bryły sztywnej - Prędkość kątowa - strona 3

Fragment notatki:

Dynamika bryły sztywnej. Bryłą sztywną nazywamy takie ciało, w którym wszystkie punkty mają zawsze stałe  odległości:  r i -  r j÷ =  r ij Wynika stąd, że podczas ruchu układ punktów materialnych, który tworzy tą bryłę sztywną,  porusza się jako całość o nie zmieniającej się postaci i objętości. Bryła sztywna w ruchu swobodnym (żadnych ograniczeń) posiada 6 stopni swobody, gdy na  ruch bryły sztywnej nałożymy więzy wówczas nie traktujemy jej jako ciało swobodne. Dla  "p" niezależnych więzów liczba stopni swobody bryły sztywnej jest równa : f = 6 - p 1.) Ruch postępowy. Jeżeli dowolna prosta przeprowadzona przez bryłę sztywną porusza się równolegle do siebie  samej to wówczas wektory prędkości wszystkich punktów ciała są w danej chwili  jednakowe i ruch taki rozumiemy przez ruch postępowy bryły sztywnej.              2.) Ruch obrotowy     Wszystkie punkty bryły sztywnej poruszają się po okręgach, których środki leżą na jednej  prostej, prosta ta nazywa się  chwilową osią obrotu , gdy oś ma stałe położenie w czasie to  wówczas mówimy o  stałej osi obrotu . Relacja prędkości liniowej "n -tego" punktu bryły sztywnej : V  n =  ω ×  r  n (1) Dla każdej bryły sztywnej, niezależnie od jej kształtu, istnieją 3 ortogonalne kierunki, dla  których moment pędu  L  jest równoległy do osi obrotu ( L   || ω). Gdy bryła sztywna posiada  jakąś symetrię to te osie symetrii są osiami głównymi. M  = d L  / dt - dla punktu materialnego M - moment sił L - moment pędu Ponieważ w ruchu obrotowym istotną wielkością jest moment pędu dlatego w dalszym  ciągu zajmiemy się wyliczaniem tej wielkości. ω jest chwilową osią obrotu i zarazem prędkością kątową ciała w ruchu obrotowym  względem osi przechodzącej przez początek układu współrzędnych. Prędkość liniowa "n -tej" cząstki bryły sztywnej  (1)  gdzie r jest odległością tej cząstki od osi  obrotu. L  =  r   × (m  V) - przypadek klasyczny L  =  Σ(n) m n ( r  n ×  V ) (2) L  =  Σ(n) m n [ r  n × (ω ×  r  n)] (3) L  =  Σ(n) m n [ω( r  n °  r  n) -  r  n ( r  n °    ω)] L  =  Σ(n) m n [ω  r  n2 -  r  n ( r  n °    ω)] (4) L  =  Σ(n) m n [ i  ω r n2 +  j  ω r n2 +  k  ω r n2 - ( i  x n +  j  y n +  k  z n) (x n ωX + y n ωY + z n ωZ)] (5) L  =  i   L X +   j   L Y +  k   L Z (6) L X =  Σ(n) m n [ωX r n2 - x n (x n ωX + y n ωY + z n ωZ)] (6a) L Y =  Σ(n) m n [ωY r n2 - y n (x n ωX + y n ωY + z n ωZ)]

(…)

… jest dobrze kreślony, gdy znamy
oś obrotu (chwilową lub stałą).
Momenty bezwładności niektórych brył sztywnych. (rys 1)
Twierdzenie Steinera.
IXX = IXXO + a2 Σ(n) m n
Moment bezwładności (IXX) dowolnego ciała wirującego dookoła osi równoległej do osi "x
-ów" oddalonej o "a" od środka masy (np. wzdłuż osi "y -ów") jest równy momentowi
bezwładności względem osi przechodzącej przez środek masy (I XXO) zwiększony…
... zobacz całą notatkę

Komentarze użytkowników (0)

Zaloguj się, aby dodać komentarz