Sprawozdanie nr 3. Doświadczenie Reynoldsa 1. Teoria 1.1. Klasyfikacja ruchu ze względu na sposób poruszania się cząstek: 1.2. Liczba Reynoldsa Liczba Reynoldsa jest to wartość bezwymiarowa, która określa charakter ruchu cząstek cieczy. v d ⋅ = υ Re dla przekroju kołowego i v R h ⋅ = υ Re dla koryta otwartego, gdzie υ oznacza prędkość średnią przepływu, d – średnica przewodu, v – kinematyczny współczynnik lepkości i Rh – promień hydrauliczny koryta. 1.3. Granice liczby Reynoldsa 1.3.1. Dla rurociągów Re 4000 1.3.2. Dla koryt otwartych praktycznie nie występuje ruch laminarny a Re 50000. 2. Cel i przebieg doświadczenia Cele doświadczenia jest określenie charakteru ruchu na podstawie obserwacji oraz obliczonej liczby Re. 3. Obliczenia. Współczynnik lepkości kinematycznej: ν = 1,1717 * 10-6 m2/s (dla obu średnic, gdyż temperatura jest stała t = 14°C) d1 = 1,40 cm A1 = π*d2 / 4 = 1,54 cm2 d2 = 4,0 cm A2 = π*d2 / 4 = 12,57 cm2 Dziennik pomiarów: d[cm] nr pomiaru temp [°C] lepkość ν [cSt] objętość V [ml] V śr [ml] czas t [s] Q [ml/s] Q śr [ml/s] v [cm/s] Re 1,40 1 14 1,1717 175 172 40 4,38 4,29 2,79 333,113 170 4,25 170 4,25 2 440 430 12 36,67 35,83 23,28 2781,332 425 35,42 430 35,83 430 35,83 425 35,42 3 410 383 5 82,00 76,50 49,70 5937,821 400 80,00 390 78,00 375 75,00 370 74,00 370 74,00 380 76,00 365 73,00 4,00 1 375 375 25 15,00 15,00 1,19 407,4975 370 14,80 380 15,20 375 15,00 2 440 468 3 146,67 155,83 12,40 4233,446 440 146,67 485 161,67 490 163,33 470 156,67 450 150,00 480 160,00 490 163,33 440 146,67 490 163,33 3 310 350 1 310,00 349,67 27,83 9499,22 310 310,00 380 380,00 420 420,00 350 350,00 260 260,00 380 380,00 400 400,00 365 365,00 345 345,00 295 295,00 305 305,00 335 335,00 450 450,00 340 340,00 4. Wnioski: Przeprowadzone doświadczenie potwierdziło teoretyczne założenia. Obserwowany przepływ, gdy strużka cieczy fluorescencyjnej pozostawała gładka, po dokonaniu obliczeń jest ruchem laminarnym. To samo można powiedzieć o kolejnych obserwacjach i potwierdzających odpowiedni reżim obliczeniach. Niepewności pomiaru i obliczeń wynikają z różnych przyczyn. Jedną z nich jest niezbyt dokładny pomiar czasu. Ten zaś wynika z trudności dokładnego określenia momentu
(…)
… obserwacjach i
potwierdzających odpowiedni reżim obliczeniach.
Niepewności pomiaru i obliczeń wynikają z różnych przyczyn. Jedną z nich jest
niezbyt dokładny pomiar czasu. Ten zaś wynika z trudności dokładnego określenia momentu
rozpoczęcia przepływu przejściowego, a później zaniku cieczy fluorescencyjnej. Wpływ na to
ma także czas reakcji mierzącego, a także niepewność określenie zapełnienia menzurki…
... zobacz całą notatkę
Komentarze użytkowników (0)