Wykład - przekształcenia Galileusza oraz transformacja Lorentza

Nasza ocena:

3
Pobrań: 42
Wyświetleń: 1057
Komentarze: 0
Notatek.pl

Pobierz ten dokument za darmo

Podgląd dokumentu
Wykład - przekształcenia Galileusza  oraz transformacja Lorentza - strona 1 Wykład - przekształcenia Galileusza  oraz transformacja Lorentza - strona 2

Fragment notatki:

Galileusza przekształcenie, Galileusza transformacja, formuła matematyczna opisująca transformacje czasu i współrzędnych przestrzennych pomiędzy dwoma inercjalnymi układami odniesienia: r=R+vT, t=T, gdzie r wektor położenia danego punktu w układzie I, R analogiczny wektor w układzie II, v - wektor prędkości układu II względem I, t - czas upływający w I układzie, T - czas w układzie II. Prawa mechaniki klasycznej (I. Newton) są niezmiennicze względem tansformacji Galileusza. Przekształcenie to jest przybliżone, odnosi się do bardzo małych prędkości (względem prędkości światła). Poprawnym przekształceniem jest transformacja Lorentza.
Lorentza transformacja, Lorentza przekształcenie, przekształcenie matematyczne opisujące transformacje wielkości fizycznych w czasoprzestrzeni czterowymiarowej przy przechodzeniu od jednego inercjalnego układu odniesienia, określonego przez współrzędne przestrzenne x, y, z i współrzędną czasową t, do drugiego, określonego przez współrzędne x', y', z' oraz t'. W najprostszym przypadku, jeśli układ (x', y', z', t') porusza się jednostajnie w kierunku osi x z prędkością v, to transformacja Lorentza ma postać: gdzie c - prędkość światła w próżni.
Często dla uproszczenia postaci zapisu transformacji do wzorów powyższych stosuje się podstawienie: =v/c oraz a także mnoży się obustronnie przez c równanie opisujące transformację czasu dla uzyskania formalnej identyczności równań dla zmiennych: czasowej (równej ct) i przestrzennej x, wówczas: x'=γ(x-ct), y'=y, z'=z, ct'=γ(ct-x). Z transformacji Lorentza wynikają wszystkie efekty kinematyczne szczególnej teorii względności, takie jak: reguła sumowania się prędkości prowadząca do niemożności uzyskania prędkości większej od prędkości światła, względność pojęcia równoczesności, skrócenie Lorentza-Fitzgeralda, spowolnienie biegu poruszajacych sie zegarów. Równania transformacji Lorentza zostały opracowane ponad 10 lat przed sformułowaniem przez A. Einsteina szczególnej teorii wzgledności (zostały wywnioskowane z równań Maxwella), były jednak wówczas traktowane jako formalne równania matematyczne, bez konsekwencji fizycznych. Transformacja Lorentza uzupełniona obrotami w przestrzeni trójwymiarowej stanowi tzw. grupę przekształceń Poincarégo. Dla małych prędkości v, rozwijając w szeregi potęgowe wzory opisujące transformację Lorentza, przy zaniedbaniu wyższych wyrazów, otrzymuje się klasyczne przekształcenie Galileusza. Transformacja Lorentza równoważna jest geometrycznie obrotowi w czterowymiarowej, zespolonej przestrzeni Minkowskiego o rzeczywistych osiach x,y,z, oraz urojonej osi czasowej (zmienna czasowa ma wówczas postać ict, gdzie i - jednostka urojona, c - prędkość światła w próżni).

(…)

… postaci zapisu transformacji do wzorów powyższych stosuje się podstawienie: =v/c oraz a także mnoży się obustronnie przez c równanie opisujące transformację czasu dla uzyskania formalnej identyczności równań dla zmiennych: czasowej (równej ct) i przestrzennej x, wówczas: x'=γ(x-ct), y'=y, z'=z, ct'=γ(ct-x). Z transformacji Lorentza wynikają wszystkie efekty kinematyczne szczególnej teorii względności
... zobacz całą notatkę



Komentarze użytkowników (0)

Zaloguj się, aby dodać komentarz