Relatywistyka i fizyka jądrowa

Nasza ocena:

5
Pobrań: 21
Wyświetleń: 546
Komentarze: 0
Notatek.pl

Pobierz ten dokument za darmo

Podgląd dokumentu
Relatywistyka i fizyka jądrowa - strona 1 Relatywistyka i fizyka jądrowa - strona 2 Relatywistyka i fizyka jądrowa - strona 3

Fragment notatki:

U1. Elementy szczególnej teorii względności    Mechanika klasyczna oparta na zasadach dynamiki Newtona poprawnie opisuje zjawiska, w których prędkości ciał są małe w porównaniu z prędkością światła. Jednak w zjawiskach atomowych, jądrowych i w astrofizyce spotykamy się z prędkościami zbliżonymi do prędkości światła i wtedy zamiast mechaniki klasycznej musimy stosować mechanikę relatywistyczną opartą na szczególnej teorii względności opracowanej przez Einsteina. Mechanika klasyczna nie jest sprzeczna z mechaniką relatywistyczną, a stanowi jej szczególny przypadek (dla małych prędkości). U1.1 Transformacja Galileusza    Spróbujemy teraz opisać zjawiska widziane z dwóch różnych inercjalnych układów odniesienia, poruszających się względem siebie (rysunek U.1). W tym celu wyobraźmy sobie, obserwatora na Ziemi, który rejestruje dwa zdarzenia (na przykład dwie eksplozje) zachodzące na pewnej, jednakowej wysokości. Rys. U1.1. Obserwacja zjawisk z dwóch poruszających się względem siebie układów odniesienia Odległość między miejscami wybuchów wynosi, (według ziemskiego obserwatora) Δx, natomiast czas między wybuchami Δt. Te same dwa zdarzenia obserwowane są przez pasażera samolotu lecącego z prędkością V po linii prostej łączącej miejsca wybuchów. Względem lokalnego układu odniesienia związanego z lecącym samolotem różnica położeń wybuchów wynosi Δx', a różnica czasu Δt'. Porównajmy teraz spostrzeżenia obserwatorów na ziemi i w samolocie. Zróbmy to na przykład z pozycji obserwatora na ziemi, który próbuje opisać to co widzą pasażerowie samolotu. Jeżeli, pierwszy wybuch nastąpił w punkcie x1' (wg samolotu), a drugi po czasie Δt, to w tym czasie samolot przeleciał drogę VΔt (względem obserwatora na Ziemi) i drugi wybuch został zaobserwowany w punkcie
 
(U1.1)
czyli (U1.2)
Jednocześnie, ponieważ samolot leci wzdłuż linii łączącej wybuchy, to Δy' = Δz' = 0. Oczywistym wydaje się też, że Δt' = Δt. Otrzymaliśmy więc wzory przekładające wyniki obserwacji jednego obserwatora na spostrzeżenia drugiego
  (U1.3)
Te równania noszą nazwę transformacji Galileusza. Sprawdźmy, czy stosując powyższe wzory do opisu doświadczeń, otrzymamy takie same wyniki, niezależnie od układu w którym to doświadczenie opisujemy. Jako przykład wybierzmy ciało poruszające wzdłuż osi x ruchem jednostajnie przyspieszonym z przyspieszeniem a. W układzie nieruchomym prędkość chwilowa ciała wynosi
  (U1.4)
Jego przyspieszenie jest stałe i równe

(…)

… i oznaczamy literą A. Liczba neutronów jest dana równaniem A − Z, gdzie Z jest liczbą protonów zwaną liczbą atomową. Wartość liczby A dla jądra atomowego jest bardzo bliska masie odpowiadającego mu atomu. Atom pierwiastka X o liczbie atomowej Z i liczbie masowej A oznaczamy symbolem .     Wyniki pomiarów rozpraszania wysokoenergetycznych protonów lub neutronów na jądrach atomowych pozwalają wyznaczyć rozkład…
… nie zależy od rozmiarów jądra, ponieważ jego objętość jest proporcjonalna do liczby masowej A.   38.2 Oddziaływanie nukleon-nukleon     Dotychczas poznane oddziaływania (grawitacyjne, elektromagnetyczne) nie pozwalają na wyjaśnienie struktury jądra atomowego. Aby wyjaśnić co tak silnie wiąże nukleony w jądrach atomowych trzeba wprowadzić nowe oddziaływanie. Ta siła wiążąca musi być większa niż siła…
… impulsu c = 2.998·108 m/s. Tymczasem zgodnie z transformacją Galileusza i ze zdrowym rozsądkiem powinniśmy otrzymać wartość c - V. Wykonano szereg doświadczeń, w których próbowano podważyć równania Maxwella, a w szczególności próbowano pokazać, że prędkość światła, tak jak prędkość dźwięku zależy od układu odniesienia (stosuje się do transformacji Galileusza). Najsławniejsze z nich, to doświadczenie…
... zobacz całą notatkę

Komentarze użytkowników (0)

Zaloguj się, aby dodać komentarz