To tylko jedna z 2 stron tej notatki. Zaloguj się aby zobaczyć ten dokument.
Zobacz
całą notatkę
Cichacz. Notatka składa się z 2 stron.
Algebra-Zestaw 1 Grupy I 1. Czy mnożenie liczb jest działaniem w zbiorze liczb niewymiernych? 2. Czy działanie ⊕ określone w zbiorze liczb R wzorem a ⊕ b = b + a − 3 jest przemienne i łączne, czy ma element neutralny? 3. Obliczyć liczbę działań przemiennych w zbiorze n -elementowym. 4. Obliczyć liczbę takich działań w zbiorze n -elementowym, które mają element neutralny. 5. Obliczyć liczbę takich działań przemiennych w zbiorze n -elementowym, które mają element neutralny. 6. Sprawdzić, czy zbiór R+ ∪ { 0 } wraz z działaniem a ◦ b = √ ab tworzy grupę abelową. 7. Niech A = { 2 x +0 , 5 , x ∈ Q } oraz niech · oznacza mnożenie liczb. Czy struktura ( A, · ) jest grupą? 8. Niech D będzie zbiorem całkowitych potęg liczby 2. Udowodnij, że struktura ( D, ◦ ), gdzie działanie ◦ jest określone następująco: x ◦ y = x·y 2 , jest grupą. 9. Wykaż, że w dowolnej grupie G dla dowolnych a, b, c ∈ G prawdą jest, że ac = bc ⇒ a = b 10. Czy poniższą tabelkę można uzupełnić tak, by trójelementowy zbiór {a, b, c} z działaniem ◦ określonym otrzymaną tabelką był grupą? ◦ a b c a b a b a b c c c ◦ a b c a a b b a b c c c 11. Udowodnij, że jeśli rząd grupy ( G, · ) jest parzysty, to istnieje taki element a ∈ G , a = e , że a · a = e . 12. Znajdź wszystkie grupy o czterech elementach (z dokładnością do izomorfizmu). 13. Wypisz wszystkie elementy grupy ( S 3 , ◦ ). 14. Dane permutacje σ, π ∈ S 9 przedstaw w postaci iloczynu cykli rozłącznych. Oblicz złożenia π ◦ σ , σ ◦ π , π ◦ π , σ ◦ σ oraz π− 1, σ− 1. 1 05.10.2011 (a) σ = 1 2 3 4 5 6 7 8 9 2 5 6 1 7 3 4 9 8 (b) π = 1 2 3 4 5 6 7 8 9 5 9 2 7 6 8 4 1 3 15. ∗ Znajdź trzy elementy σ ∈ S 9 takie, że σ ◦ σ ◦ σ = (157)(283)(469). 2
... zobacz całą notatkę
Komentarze użytkowników (0)