1 Materiały do ćwiczeń z przedmiotu Statystyka w IŚ 1. Pomoce naukowe (wymagają zainstalowania wtyczki Wolfram CDF Player) http://demonstrations.wolfram.com/UrnProblem/ http://demonstrations.wolfram.com/UrnSamplingWithOrWithoutReplacement/ http://demonstrations.wolfram.com/GameOfDice/ http://demonstrations.wolfram.com/DiceRollerPennyFlipper/ 2. Wzory itp. Twierdzenie o mnożeniu: Jeśli dane są dwa skończone zbiory A i B to liczba różnych par (x,y) takich, że x należy do A oraz y należy do B jest równa ̅ ̅. Np.: Rzucono dwa razy monetą. Zbiór zdarzeń elementarnych liczy 2×2=4. Silnia: n!=n·(n-1)! 0!=1 1!=1 W praktyce: n!=1·2·3·4·5·...·n Permutacje: Permutacją nazywamy uporządkowany podzbiór. Liczba k-elementowych permutacji, możliwych do otrzymania ze zbioru n-elementowego wynosi ( ) Dwumian Newtona: Eksperyment Wynik 1 Wynik 1 Wynik 2 Wynik 2 Wynik 1 Wynik 2 )! ( ! ! k n k n k n 1 0 n n n 2 Kombinacje: Kombinacją nazywamy liczbę sposobów, na które można wybrać k elementów (podzbiorów nieuporządkowanych) ze zbioru n-elementowego. Reguła mnożenia n 1 n 2 nk Permutacja ( ) Kolejność ma znaczenie Powtórki nie są dozwolone Kombinacja ( ) Kolejność nie ma znaczenia Powtórki nie są dozwolone 3. Zadania 1) Dane są: A-{a,b,c} B={1,2,3}. Ile różnych napisów złożonych z litery i cyfry można otrzymać, wybierając po jednym symbolu z każdego ze zbiorów? Narysuj drzewko do tego zadania i wypisz wszystkie możliwe napisy. odp.: 3·3=9 2) Ile różnych wyników można otrzymać przy rzucie monetą i kostką? Odp.: 6·2=12 3) Ile jest różnych liczb czterocyfrowych? Odp.: 9·10·10·10 k - n - k k - n n k n 1 1 k ) ( 1 1 - k n k n k n )! ( ! ! , k n k n k n k n C 3
(…)
… znajduje się dwadzieścia śrub, w tym trzy wadliwe. Losujemy bez zwracania pięć śrub.
Ile istnieje sposobów wylosowania jednej śruby wadliwej?
Odp.: ( ) (
)
13) Pudełko zawiera 6 ponumerowanych sześcianów. Jakie jest prawdopodobieństwo, że wyciągając
po jednym sześcianie otrzyma się sekwencję 1,2,3,4,5,6.
Odp.: 1/6!=1/720
14) Rzucono trzy kości do gry. Znajdź prawdopodobieństwo zdarzenia polegającego na tym, że na
jednej z kości wypadnie 6 oczek, podczas gdy na żadnej z kości nie wypadnie taka sama liczba oczek.
Odp.: Pr 3
1 5 4 60 5
63
216 18
3
15) W pudełku znajduje się 10 tranzystorów. 6 z nich jest sprawna a 4 są uszkodzone. Znajdź
prawdopodobieństwo tego, że wszystkie 4 losowo wyciągnięte będą sprawne.
Odp.: Pr
C6, 4
6 5 4 3
1
1
lub Pr
10 9 8 7 14
C1 0, 4 14
15) Odcinek…
… liczb. Ile jest możliwych sposobów otrzymania wyniku?
Odp.: C49,6=1398381
12) W pudełku znajduje się dwadzieścia śrub, w tym trzy wadliwe. Losujemy bez zwracania pięć śrub.
Ile istnieje sposobów wylosowania jednej śruby wadliwej?
Odp.: ( ) ( )
13) Pudełko zawiera 6 ponumerowanych sześcianów. Jakie jest prawdopodobieństwo, że wyciągając
po jednym sześcianie otrzyma się sekwencję 1,2,3,4,5,6.
Odp.: 1/6!=1/720
14) Rzucono trzy kości do gry. Znajdź prawdopodobieństwo zdarzenia polegającego na tym, że na
jednej z kości wypadnie 6 oczek, podczas gdy na żadnej z kości nie wypadnie taka sama liczba oczek.
1 5 4 60 5
Odp.: Pr 3
63 216 18
3
15) W pudełku znajduje się 10 tranzystorów. 6 z nich jest sprawna a 4 są uszkodzone. Znajdź
prawdopodobieństwo tego, że wszystkie 4 losowo wyciągnięte…
…
prawdopodobieństwo tego, że:
C
1
a) obie kule będą czarne, Odp.: Pra 3, 2
C9, 2 12
C6, 2 5
b) obie kule będą białe, Odp.: Prb
C9, 2 12
18) Widną 8-piętrowego budynku jedzie 5 pasażerów. Znajdź prawdopodobieństwo tego, że każdy z
nich wysiądzie na innym piętrze.
Pr
87 65 4
85
19) Prawdopodobieństwo tego, że w trakcie pojedynczego pomiaru pewnej wielkości fizycznej błąd
pomiaru przekroczy dopuszczalne…
... zobacz całą notatkę
Komentarze użytkowników (0)