To tylko jedna z 4 stron tej notatki. Zaloguj się aby zobaczyć ten dokument.
Zobacz
całą notatkę
Filtry cyfrowe
Równania różnicowe
równianie w dziedzinie czasu dyskretnego
równanie w dziedzinie Z
Modele systemu/sygnału:
AR (ang. autoregresion)
MA (ang. moving average)
ARMA (ang. autoregresion moving average)
Położenie biegunów transmitancji H(z)
bi = [.9*e^(-j*pi*2/4); .9*e^(j*pi*2/4)]; A = poly(bi);
figure(1); zplane([],A);
figure(2); freqz([],A,512,'whole');
Położenie zer transmitancji H(z)
zr = [.9*e^(-j*pi*1/4); .9*e^(j*pi*1/4)]; B = poly(zr);
figure(1); zplane(B,[]);
figure(2); freqz(B,[],512,'whole');
Rodzaje filtrów:
–
DP/GP
–
PP/PZ
(Lyons rysunek ze str. 181)
pasmo przepustowe, pasmo przejściowe, pasmo zaporowe, nierównomierność charakterystyki
Nie ma filtrów idealnych!
Stabilność
BIBO – ograniczone wejście = ograniczone wyjście
∃M 0∥ x n∥M
∃K 0∥ y n∥≤ K ,
y n =x n∗h n
BIBO słabsze od zwykłej stabilności – np. co będzie, gdy pobudzimy system skokiem
jednostkowym?
x n=u n5
bi=[1*e^(-j*pi*.17), 1*e^(j*pi*.17)]; A=poly(bi); zplane(1,A);
N=20;x=[zeros(1,N),ones(1,3*N)];y=filter(1,A,x);n=(0:4*N-1);plot(n,x,n,y);
N=20;x=[zeros(1,4*N)];x(N)=1;y=filter(1,A,x);n=(0:4*N-1);plot(n,x,n,y);
SOI (FIR) – zawiera tylko zera
Stabilny zawsze – zera mogą być gdziekolwiek.
Odwrotny jest nie zawsze stabilny!!! - tylko minimalnofazowy
Równoważny z modelem MA
System minimalno-fazowy
Co to jest system odwrotny? H(z) → 1/H(z)
Definicja i korzyści
Liniowa faza filtru
po co? Opóźnienie grupowe
G f =
d f
[s ]
d f
NOI (IIR) – zawiera również bieguny
Warunki stabilności – bieguny wewnątrz koła jednostkowego
Nieliniowa faza filtru!!! Kompensacja przez filtr wszech-przepustowy.
Struktury obliczeniowe filtrów
Struktura bezpośrednia
Rys dla FIR
Rys dla IIR
Struktura kratowa
Rys dla AR
Rys dla ARMA
... zobacz całą notatkę
Komentarze użytkowników (0)