Budowa matrycy generatora RM

Nasza ocena:

5
Wyświetleń: 6895
Komentarze: 0
Notatek.pl

Pobierz ten dokument za darmo

Podgląd dokumentu

Fragment notatki:

Construction of the generator matrix of a RM( r , p ) code Step 0.
The first row of G is the all-1 codeword: .
Step 1.
The next rows, the 1 st order codewords, form submatrix
0 1 n 1
The l -th column is the integer l in the binary code:
.
Step 2.
The next rows, the 2 nd order codewords, form submatrix . Its codewords are logic (Boolean) products of all pairs of the 1 st order words. The product of two binary n -tuples and is defined as:
, where , if and only if .
Step r .
The last rows, the r -th order codewords, form . Its codewords are products of all combinations of r words of the 1 st order.
RM codes in nonsystematic form can be decoded in different ways. Polynomial notation based, a cyclic code decoding (7.1.20-7.1.25) is one of them. Nonsystematic code can be always converted into systematic code, by mod-2 additions of nonsystematic code generator matrix rows (codewords), and then, matrix algebra based decoding (5.2.25, 5.2.26) can be applied.
... zobacz całą notatkę



Komentarze użytkowników (0)

Zaloguj się, aby dodać komentarz